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Abstract. We have determined the three-dimensional electron–positron momentum density
for the ordered binary alloyβ ′-AgZn using two-dimensional angular correlation of positron
annihilation radiation (2D-ACAR). The Fermi surface obtained from the momentum density is
compared with the results from de Haas–van Alphen measurements and theoretical calculations.
We have also observed the high-momentum components, and the enhancement effect on the
momentum density.

1. Introduction

Intermetallic binary compounds such asβ ′-CuZn andβ ′-AgZn are of great interest since
these compounds have the simplest type of ordering. These materials undergo a phase
transition from a high-temperature random substitutional bcc (or A2) structure to a low-
temperature ordered CsCl (or B2) structure. The silver–zinc binary alloy undergoes a
second-order A2–B2 transition at 600 K. The ordered alloyβ ′-AgZn is known to be a
Hume-Rothery compound. The valence electron concentratione/a is 1.5 and the first
Brillouin zone is simple cubic. The B2 phase is stable at temperatures higher than 530 K
and transforms into theζ -phase of a partially ordered structure with trigonal symmetry.
However, when theβ-phase alloy is quenched into iced water, the transition into theζ -phase
is suppressed and a metastableβ ′-phase having the B2-type ordered structure is obtained.
Unlike other Hume-Rothery phases,β ′-AgZn does not undergo a martensitic transformation
even if cooled down to liquid-helium temperature.

Electronic properties as well as structural properties of ordered and disordered phases
have been studied by a number of authors. A theoretical calculation of the Fermi surface for
orderedβ ′-CuZn alloy was performed by Arlinghauss [1]. Skriver has calculated the energy
bands and the Fermi surface ofβ ′-AgZn by the augmented-plane-wave (APW) method [2]
and the results showed thatβ ′-CuZn andβ ′-AgZn have similar Fermi surfaces and energy
bands. Dunsworth and Jan obtained the shape of the first-zone hole surface via de Haas–
van Alphen (dHvA) measurements [3], and the result showed an excellent agreement with
Skriver’s APW calculation.

In the present paper we have investigated the electronic structure of orderedβ ′-AgZn
alloy in detail via two-dimensional angular correlation of positron annihilation radiation
(2D-ACAR) measurements. From the measured electron momentum density, we determine
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the Fermi surface ofβ ′-AgZn and compare the results with the theoretical calculation and
the dHvA measurements. In addition, we discuss contributions from the reciprocal-lattice
points, and the electron–positron many-body effect (enhancement effect) on the measured
momentum density.

2. Experiments

The 2D-ACAR apparatus which was used in the present experiment consists of a pair of 128
Bi4Ge3O12 (BGO) detectors. The angular resolution of the detector,DD, is 0.75 mrad×
0.75 mrad. The distance between the sample and one of the detectors is 8 m. A radioactive
isotope,22Na, with an activity of about 3×109 Bq was used as a positron source. The (001)
plane of the single crystal ofβ ′-AgZn was directed to the positron source in a vacuum. A
magnetic field of 1.2 T, which was applied along the [001] direction, focused the positron
beam from the positron source onto the specimen. The 2D-ACAR spectrum was measured
on a 0.2 mrad× 0.2 mrad mesh in the momentum range of±22 mrad in two directions,
one of which is the [001] direction, while the other is perpendicular to [001]. All of the
measurements were performed at 32 K for the purpose of reducing the effect of residual
momenta of thermalized positrons. The smearing of the angular resolution due to the
momenta of positrons,DT , is estimated to be 0.24 mrad in FWHM, assuming the effective
mass of a positron to be twice the mass of a free electron. The smearing of the angular
resolution due to the limited size of both the positron beam and the sample,DS , is estimated
to be 0.70 mrad. In the present experiment,DS was determined by the size of the focused
positron beam. The total resultant resolution in the direction parallel to the [001] axis
is (D2

D+D2
T )1/2 = 0.79 mrad and that in the direction perpendicular to the [001] axis is

(D2
D+D2

T +D2
S)1/2 = 1.05 mrad. The 2D-ACAR spectra were measured for ten projections

between [010] and [110] by rotating the sample around the [001] axis in 5◦ steps. The total
accumulated coincidence counts was for each projection about 8× 106 counts.

3. Data analysis

The 2D-ACAR spectrum

N(py, pz) =
∫

ρ( p) dpx (1)

is the projection of the electron–positron momentum densityρ( p) onto thepy–pz plane,
where p is the annihilating electron–positron pair momentum andpx is the momentum
component of the positrons parallel to the emittedγ -rays. From 2D-ACAR spectra for
several different projections, we can reconstruct the full three-dimensional electron–positron
momentum density by using the direct Fourier reconstruction technique [4, 5]. This
technique is based on the following Fourier projection theorem:

FT2[N(px, py)] = constant× B(r)|x=0 = (2π)−3/2
∫∫∫

ρ( p)e−ip·r dp|x=0 (2)

whereB(r) is the 3D Fourier transform ofρ( p). The 2D-ACAR data which are measured
for various directions are Fourier transformed intoB(r) by the fast Fourier transform, and
then the interpolation ofB(r) onto a cubic grid is carried out. Finally, the 3D inverse
Fourier transform ofB(r) yields the full 3D momentum densityρ( p).
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Figure 1. 2D-ACAR spectra forβ ′-AgZn. The angle denotes the deviation of the projection
direction from [010].

In the independent-particle model, the electron–positron momentum densityρ( p) can
be expressed as

ρ( p) = constant×
occ∑
n,k

∣∣∣∣∫
V

dr ψ+(r)ψn,k(r)e−ip·r
∣∣∣∣2

(3)
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Figure 2. The electron–positron momentum densityρ( p) for β ′-AgZn on a central (100) plane
(a) and a central (110) plane (b). The first and second Brillouin zone are also indicated.

whereψn,k(r) is the wavefunction of an electron,n is the band index,k is the wave vector,
ψ+(r) is the wavefunction of a thermalized positron (k = 0) andV is the crystal volume.
The summation is taken over all occupied electron states.

The p-space distributionρ( p) has extra contributions to the Fermi surface around the
reciprocal-lattice points. In order to determine the precise Fermi surface, we folded back the
p-space distributionρ( p) into thek-space using the Lock–Crisp–West (LCW) [6] folding
procedure. This procedure is a periodical superposition ofρ( p) on every reciprocal-lattice
point as given by

n(k) =
∑
Gj

ρ( p + Gj ) (4)

whereGj is the j th reciprocal-lattice vector andk is the wave vector defined within the
first Brillouin zone. On the basis of the Bloch theorem, thek-space distributionn(k) can
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Figure 2. (Continued)

be described as

n(k) = constant×
∑
n,k

θ(EF − En,k)

∫
cell

dr |ψ+(r)|2|ψn,k(r)|2 (5)

whereEF is the Fermi energy,En,k is the energy of the electron for the stateψn,k(r) and
θ(EF − En,k) is a step function defined as follows:

θ(EF − En,k) =
{

1 EF > En,k

0 EF < En,k.
(6)

Therefore,n(k) should have breaks corresponding to the Fermi surface edge. If the density
of positrons can be assumed to be spatially uniform, the integral in equation (5) is equal to
unity for occupied electron states. Even in the general case where the density of positrons
is not uniform, thek-dependence of the integral still seems to be not so large that the breaks
in n(k) can indicate the location of Fermi surface ink-space.
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4. Results and discussion

Figure 1 shows ten different 2D-ACAR spectraN(py, pz) for orderedβ ′-AgZn. All spectra
with a hemispherical shape suggest that the distortion from a nearly-free-electron model is
small. This experimental result is in good agreement with the theoretical result [2] that the
Fermi surface can be understood in terms of a nearly-free-electron model.

We reconstructed the three-dimensional momentum densityρ(p) from ten different 2D-
ACAR spectra. The reconstruction was performed up to 20 mrad. Figure 2 showsρ( p) on
central (100) and (110) planes. These distributions are almost isotropic, but have anisotropy
at the M points (the distance0M is 5.46 mrad). It is considered that this anisotropy reflects
the neck at the M point. By finding the momentumpF satisfying the condition that|∇ρ( p)|
has a maximum along the radial direction, we determined the Fermi surface ofβ ′-AgZn in
the extended-zone scheme. The Fermi surface determined by this procedure in the extended
zone is only an approximation because of the contribution of reciprocal-lattice points at
large momentum.

Figure 3. The Fermi momentum obtained from the electron–positron momentum densityρ(r).
The horizontal dotted line represents the free-electron Fermi radius. The experimental resolution
of 1 mrad corresponds to the spread of about 11◦ in the angle at the free-electron Fermi radius.
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Figure 3 shows the Fermi momentum ofβ ′-AgZn in an extended zone on central (100)
and (110) planes. The free-electron Fermi radiuspF for β ′-AgZn is calculated to be
5.487 mrad, assuming that there are three conduction electrons per primitive cell. The
deviation of the Fermi momentum from the free-electron Fermi radius is within the range
−2.7% to+1.5%.

In order to discuss the precise Fermi surface, we folded back thep-space dataρ( p) into
the k-space momentum densityn(k) using the LCW folding procedure. Figure 4 shows
the normalizedn(k) along the principal symmetry lines normalized as follows:

n(k)

/( ∫
n(k) dk

/∫
dk

)
× 100(%) . (7)

It is expected from the calculation that at X and M points there are electron surfaces and at
R and0 points there are hole surfaces.

Table 1. Extremal cross sectional areas (in units of (2π/a)2).

2D-ACAR dHvA [3] APW [2] Free electron [7]

AR
1 0.169 0.1783 0.184 0.203

AR
2 — — 0.222 0.203

A0
2 0.354 — — 0.417

BR
1 0.138 0.1304 0.130 0.123

BX
2 0.281 0.2600 0.260 0.292

BM
2 0.212 0.1747 0.136 0.013

We shall discuss the Fermi surface topology forβ ′-AgZn in detail. Theoretical
calculations and dHvA measurements show that in the first zone the Fermi surface has
a hole sheet which has the shape of an octahedron centred at the R point, and that in the
second zone it has the form of convex lenses perturbed by necks lying perpendicular to
the 〈110〉 direction. We determined the Fermi surface ofβ ′-AgZn in the reduced zone as
the loci of the local maximum of|∇ρ( p)|. Figure 5 shows the Fermi surface obtained
by this experiment on the R-centred (110) plane (a), the R-centred (100) plane (b) and the
0-centred (100) plane (c), respectively. The cross sectional areas of the Fermi surface of
β ′-AgZn obtained from this experiment, the dHvA experiment [3], the APW calculation [2]
and the free-electron model [7] are also listed in table 1. The labels in the table correspond
to those given by Janet al [7], i.e., A and B stand for the normal directions〈100〉 and〈110〉,
respectively, the subscript represents the band number, and the superscript represents the
central point. First, we discuss the first-zone hole surface. There is a hole sheet centred at
the R point, as shown in figure 5(a). The 2D-ACAR result forBR

1 is in good agreement with
the results from the APW calculation and the dHvA experiment, and that forAR

1 agrees with
the dHvA experimental result but does not agree with that obtained by the APW calculation.
As for the second-zone Fermi surface, the extremal cross sectional area ofBX

2 agrees with
the result from the APW calculation and that from the dHvA experiment. On the other hand,
the cross sectional areas ofBM

2 from 2D-ACAR and dHvA experiments do not agree with
that from the APW calculation. We could not determine the cross section ofAR

1 , because at
the R point the Fermi surface has both a first-zone holeAR

1 and a second-zone hole orbitAR
2 .

The 2D-ACAR results are in good agreement with those from the dHvA experiment, but
there is a small discrepancy between our results and those from the theoretical calculation.
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Figure 4. The reduced-zone electron–positron momentum densityn(k) for β ′-AgZn for various
symmetry points and symmetry axes. The average ofn(k) is 100%.

Figure 5. The Fermi surface in the reduced zone forβ ′-AgZn on (110) centred on R (a), on
(100) centred on R (b) and on (100) centred on0 (c). Solid line: 2D-ACAR experiment. Dotted
line: free-electron model.
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Figure 6. The lower part of the electron–positron momentum densityρ( p) on the central (100)
and (110) planes.

In the region of momentum higher than the Fermi momentum, the value ofρ( p) is the
sum of both core and the reciprocal-lattice contributions, which are called high-momentum
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components (HMC). In order to observeρ( p) in the high-momentum region, we enlarged
ρ( p) on the (100) and (110) planes as shown in figure 6. It is noted that the contributions
of G001 = (0, 0, 20X) (0X = 3.86 mrad) are clearly seen on the (110) plane.

Table 2. Enhancement parameters,b/a, c/a and (b + c)/a, determined from the electron–
positron momentum densityρ(p) along the [100], [110] and [111] directions, compared with
the theoretical results of Kahana [8] and Arponen and Pajanne [9].

b/a c/a (b + c)/a

[100] 0.24 0.14 0.38
[110] 0.24 0.20 0.44
[111] 0.25 0.15 0.40
Kahana 0.19 0.13 0.32
Arponen and Pajanne 0.12 0.11 0.23

The electron–positron momentum densityρ( p) inside the Fermi surface is not constant
but depends onp. This momentum dependence is called the enhancement effect, and is
represented by Kahana [8] for an interacting gas as

ε = ρV ( p)

ρIPM( p)
= a

(
1 + b

a

(
p

pF

)2

+ c

a

(
p

pF

)4)
(8)

whereρV ( p) is the valence electron contribution,ρIPM( p) is the momentum density in
the IPM, anda, b andc are constants. In order to determine the enhancement parameters
b/a andc/a, we must subtract the core-electron contribution from the experimentalρ( p).
We assumed the core-electron background to be a Gaussian for simplicity, and fitted the
Gaussian function from the data above 10 mrad and subtracted the Gaussian part from
the data, where the statistical error is about 2% at 10 mrad. Then we fitted the data to
equation (8) with convolution of the angular resolution function. We used the free-electron
value of 5.487 mrad as the Fermi momentumpF and assumedρIPM( p) to be constant.
The fitted parameters for along three directions are given in table 2 and compared with
the Kahana, and Arponen and Pajanne [9] theoretical values which are interpolated for the
electron densityrs = 2.55 au. It is found that all of the present experimental values are
greater than the theoretical values, the values ofb/a are the same for all directions, and the
values ofc/a for the 〈100〉 direction are greater than those for〈100〉 and 〈110〉 directions.
It is considered that the anisotropy for the〈110〉 direction is related to the fact that the
Fermi momentum for the〈110〉 direction is very close to the Brillouin zone boundary, and
the electrons cannot be considered as free electrons. The Kahana-like theories describe the
positron–electron many-body effects reasonably well except as regards the condition that
the electron does not behave as a free electron.

5. Conclusions

In the present work, the three-dimensional electron–positron momentum densityρ( p) of
β ′-AgZn was measured by means of 2D-ACAR. We reducedρ( p) to the reduced zone
momentum densityn(k), and determined the Fermi surface ofβ ′-AgZn. The agreement
between the 2D-ACAR and dHvA results is excellent. However, a small discrepancy is seen
between our results and the results from the theoretical calculations. The high-momentum
components were observed in the measuredρ( p). The enhancement parameters determined
from the present experimental data are greater than the theoretical values and have anisotropy
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for the 〈110〉 direction. The validity of 2D-ACAR technique as applied to orderedβ ′-AgZn
was experimentally examined, and the shape and position of the Fermi surface obtained
from the 2D-ACAR spectra agree in general with the results from dHvA experiments and
theoretical calculations.
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